Берег морской волны
21-10-2023, 10:30
Берег морской волны
Волны создаются вследствие воздействия ветра (передвижение воздушных масс) на поверхность воды.
В силу того что вода является веществом более плотным, чем воздух (примерно в 800 раз) — реакция воды на воздействие ветра несколько «запаздывает», и рябь переходит в волны лишь через некоторое расстояние и время при условии постоянного воздействия ветра. (Фото Simon Woodley): Направление волны не всегда совпадает с направлением ветра. Это особо заметно при изменении направления ветра, смешивании разных воздушных потоков. (Фото Andrew Bartlett): В отличие от постоянных потоков в реках, что идут в практически одном и том же направлении, энергия волн содержится в их вертикальном колебании и частично горизонтальном при малой глубине. Высота волны, а точнее, её распределение, расценивается как 2/3 над среднестатистической поверхностью воды и всего лишь на 1/3 в глубь. (Фото Park Ji-ho): При движении волны вниз в основном действуют сила гравитации, вязкость жидкости, давление ветра на поверхность. Противодействуют этому процессу: инерция предыдущего движения воды, внутреннее давление моря (вода медленно уступает место опускающейся волне — перемещая давление в близлежащие районы воды), плотность воды, вероятные восходящие потоки воздуха (пузыри), возникающие при опрокидывании гребня волны, и т. д. (Фото Pascal Rossignol): Особенно важно отметить тот факт, что ветровые волны являются сконцентрированной энергией ветра. Волны передаются на большие расстояния и сохраняют в себе потенциал энергии на долгое время. Это даёт волнам большое преимущество как возобновляемому источнику энергии. (Фото Nic Bothma): Сложность воплощения волновых генераторов в реальность заключается в самой водной среде и её непостоянстве. Известны случаи высоты волн в 30 и более метров. Сильны волнения или высокая энергоконцентрация волн в районах ближе к полюсам (в среднем 60-70 кВт/м²). (Фото Mathieu Rivrin): Этот факт ставит перед изобретателями, работающими в северных широтах, задачу обеспечить должную надежность устройства, а не уровень КПД. И наоборот — в Средиземном море и Чёрном море, где энергоёмкость волн составляет в среднем около 10 кВч/м², конструкторы, кроме живучести установки в неблагоприятных условиях, вынуждены искать способы повышения эффективности установки (КПД), что неизменно приведёт последних к созданию более рентабельных установок. Примером может послужить Австралийский проект Oceanlinx. (Фото Fred Tanneau): Волны-убийцы — гигантские одиночные волны, возникающие в океане, высотой 20—30 метров (а иногда и больше). (Фото Gareth Fuller): В отличие от цунами, возникающих в результате подводных землетрясений или оползней и набирающих большую высоту лишь на мелководье, появление «волн-убийц» не связано с катастрофическими геофизическими событиями. (Фото Brian Bielmann): Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность возникновения экстремальных волн в такой схеме оказывается слишком мала. (Фото Owen Humphreys): Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн. (Фото Glyn Kirk): Одной из проблем в изучении волн-убийц является сложность их получения в лабораторных условиях. В основном исследователи вынуждены работать с данными, полученными при наблюдениях в естественных условиях, причём такие данные весьма ограничены в силу непредсказуемого характера возникновения волны-убийцы. (Фото Glyn Kirk): (Фото James Manning):
Смотрите также: